

www.isu-hessen.de

U N I K A S S E L V E R S I T 'A' T

Hessen: ISU Course Outline

ADAPTION STRATEGIES TO CLIMATE CHANGE

CLASS HOURS: 20+tutorial

	14 hours
Lectures	(credited)
	2 hours
Tutorial	(not
	credited)
Field Trip / field	6 hours
test	(credited)

PROFESSOR (Academic Director)

Prof. Dr. Stephan Theobald

Office: Kurt-Wolters-Straße 3; D-34125 Kassel - Office hours: by appointment
Email: s.theobald@uni-kassel.de - Phone: +49 561 804-2679

Lecturers:

Apl. Prof. Dr. Rüdiger Schaldach, Director of the Global and Regional Dynamics research group at CESR (Center for Environmental Systems Research), U Kassel

Dr.-Ing. Swen Klauß, Department of Building Physics at U Kassel, FB (Faculty) 06 - Urban Planning - Landscape Planning

Dr. Dietrich Schmidt, Fraunhofer Institute for Energy Economics and Energy System Technology (IEE), Kassel

Prof. Dr. David Laner, Head of the Research Center for Resource Management and solid Waste at the University of Kassel

Prof. Dr. Kai Füldner, Director of the Städtische Museen Kassel (City Museum and Museum of Natural History), lecturer at the University of Kassel (Biology) and University of Göttingen (Forest Zoology)

1)INFORMATION ON THE COURSE CONTENT

COURSE DESCRIPTION

Adaptation to the consequences of climate change, such as extreme weather conditions and changing rainfall distribution is one of the major challenges facing science and technology. Climate projections indicate a number of challenges we have to confront. This course is intended to provide an overview of adaptation requirements, especially in areas of importance for business and society which stand to be affected by climate change. In particular, the commercial sectors of tourism and health, transport and energy technologies, not to mention agriculture, forestry, and water management, are of major significance.

Problems posed by climate change, with specific reference to the region of North Hesse, will be examined in order to develop and implement possible strategies of adaptation.

LEARNING OBJECTIVES

The interdisciplinary seminar is built around a series of lectures concerned with climate change adaptation strategies, delivered by professors from diverse disciplines. Students learn from and are inspired by leading academics working at the forefront of their fields. All lectures are additionally attended by tutors who supervise the students throughout the series. They also accompany the students on field trips and help them prepare for the final exam.

COURSE MATERIALS

Introductory recommendation before the course starts: The Global Status Report REN21-Renewable Energy Policy Network for the 21st century: http://www.ren21.net/ren21activities/globalstatusreport.aspx - All further material will be given during the course.

TENTATIVE CLASS SCHEDULE

Day	Торіс	Structure and Assignment given	Lectures
	Climate	Presentation	n.n.
1	Projections and	Discussion	
	Scenarios	Recommendations for post-course work	
		to reinforce understanding	
-	Land Use and	Presentation	Prof. Dr. Rüdiger
2	Climate Change	Discussion	Schaldach
		Post-course work recommendations	
	Urban Climate	Fraunhofer IEE (Institute for Energy	Dr. Dietrich Schmidt
		Economics and Energy System	and experts on site
3		Technology)	
-		Visit and lecture/presentation	
		Discussion	
		Post-course work recommendations	
_	Landfill mining	Presentation	Prof. Dr. David Laner
5	and Climate impac	Discussion	
		Post-course work recommendations	
	Field Trip:	Field trip with factory visit, presentation	Experts on site
6	Wolfhagen –	Discussion	
-	factory and energy		
	concept		F
3	Excursion to	Field trip - Company providing	Experts on site
	Autarcon, Kassel	solutions for decentralized,	
		energetically self sufficient drinking	
		Water treatment Presentation	
		Discussion	
	Thormal Comfort	Discussion	Prof Dr. Klauß
7	in Ruildings	Discussion	FIOL DL. KIAUIS
	in buildings	Discussion Post-course work recommendations	
		Prospectation	
8	Forestry and	Discussion	Prof Dr. Kai Füldnar
	Climate Change	Discussion Post-course work recommendations	FIOL DL. NALFUIUTIEL
		FUST-COULSE WOLK TECOMMENUATIONS	

2)INFORMATION ON CLASS PARTICIPATION, ASSIGNMENTS AND EXAMS

ASSIGNMENTS

- Active participation in discussions and presentations, independent study

EXAMS

- Written exam

PROFESSIONALISM & CLASS PARTICIPATION

- Regular attendance in lectures and field trips

MISSED CLASSES

No more than 10% of the contact hours can be missed for successful completion of the class.

3)INFORMATION ON GRADING AND ECTS

ACADEMIC STANDARDS

Upon successful completion, 3 ECTS will be awarded for the class.

According to the rules of ECTS, one credit is equivalent to 25-30 hours student workload.

GRADING SCALE:

Grade		Description	
15 points 14	1.0	very good: an outstanding achievement	
points		very good. an outstanding demovement	
13 points	1.3		
12 points	1.7	good: an achievement substantially above average requirements	
11 points	2.0		
10 points	2.3		
9 points	2.7	satisfactory: an achievement which corresponds to average requirements	
8 points	3.0		
7 points	3.3		
6 points	3.7	sufficient: an achievement which barely meets the	
5 points	4.0	requirements	
4 points			
3 points	5.0	not sufficient / failed: an achievement which does	
2 points		not sufficient / julieu. un achievement which does	
1 point		not meet the requirements	
0 points			

IV 2025. Program is subject to change.